Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 amir.hoveyda@bc.edu Received February 18, 2006

Operationally Simple, Efficient, and

Tetrahydropyrans Catalyzed by Triflic

Alessandra Puglisi,^{†,§} Ai-Lan Lee,[†] Richard R. Schrock,[#] and Amir H. Hoveyda^{*,†}

Diastereoselective Synthesis of

cis-2,6-Disubstituted-4-Methylene

ORGANIC LETTERS 2006 Vol. 8 No. 9

2006 Vol. 8, No. 9 1871–1874

ABSTRACT

A highly efficient (0.01 mol % of TfOH), operationally simple (room temperature, inexpensive, and commercially available catalyst), and diastereoselective (up to >98% de) method for Brønsted acid-catalyzed reaction of enol ethers to form *cis*-2,6-disubstituted tetrahydropyrans is disclosed.

55% yield, >98% de

Practical, environmentally friendly, and efficient methods for stereoselective synthesis of heterocycles are critical to the synthesis of medicinally relevant organic molecules. An important class of heterocyclic synthesis targets is functionalized chiral pyrans.¹ Accordingly, a number of synthesis strategies have been recently developed that involve stereoselective conversions of appropriately functionalized acyclic O-containing precursors to 2,6-disubstituted pyrans. In one set of transformations, a highly electrophilic oxocarbenium ion, generated from reaction of an alcohol and an aldehyde in the presence of a Lewis acid, is intramolecularly trapped by an electron-rich neighboring alkene through an oxoniumene process (Prins-type cyclizations).² The above strategy

Acid

requires sub-stoichiometric (0.5 equiv) or super-stoichiometric (2 equiv) amounts of strong Brønsted or Lewis acids. In a related study, the only catalytic method disclosed thus far in this general class of transformations, 5-20 mol % of a Lewis acid catalyst (In(OTf)₃), is used in the presence of 1.2-2.5 equiv of trimethyl silyl halides to promote intermolecular oxonium-ene cyclizations; these diastereoselective transformations afford *cis*-2,6-disubstituted pyrans that bear a C-halide bond at the C4 position.³ In another set of investigations, electron-donating silyl units are installed to enhance the reactivity of the nucleophilic olefin (allylsilanes).⁴ The latter approach delivers excellent yields of pyrans in high diastereoselectivities. However, additional operations

Boston College.

[#] Massachusetts Institute of Technology.

[§] Present address: Universita' degli Studi di Milano, Dipartimento di Chimica Organica ed Industriale, via Golgi, 19-20133 Milano, Italy.

⁽¹⁾ For representative examples, see: (a) Evans, D. A.; Carter, P. H.; Carreira, E. M.; Charette, A. B.; Prunet, J. A.; Lautens, M. J. Am. Chem. Soc. **1999**, *121*, 7540–7552. (b) Smith, A. B., III; Razler, T. M.; Ciavarri, J. P.; Hirose, T.; Ishikawa, T. Org. Lett. **2005**, *7*, 4399–4402. (c) Sohn, J.-H.; Waizumi, N.; Zhong, H. M.; Rawal, V. H. J. Am. Chem. Soc. **2005**, *127*, 7290–7291.

^{(2) (}a) Cloninger, M. J.; Overman, L. E. J. Am. Chem. Soc. **1999**, *121*, 1092–1093. (b) Sabitha, G.; Reddy, K. B.; Reddy, G. S. K. K.; Fatima, N.; Yadav, J. S. Synlett **2005**, 2347–2351.

^{(3) (}a) Loh, T.-P.; Yang, J.-Y.; Feng, L.-C.; Zhou, Y. *Tetrahedron Lett.* **2002**, *43*, 7193–7196. (b) Chan, K.-P.; Loh, T.-P. *Org. Lett.* **2005**, *7*, 4491–4494.

^{(4) (}a) Kopecky, D. J.; Rychnovsky, S. D. *J. Am. Chem. Soc.* **2001**, *123*, 8420–8421. (b) Leroy, B.; Marko, I. E. *Tetrahedron Lett.* **2001**, *42*, 8685–8688. (c) Keck, G. E.; Covel, J. A.; Schiff, T.; Yu, T. Org. Lett. **2002**, *4*, 1189–1192. (d) Hansen, E. C.; Lee, D. *Tetrahedron Lett.* **2004**, *45*, 7151–

must be carried out to incorporate the requisite silyl group, and the use of 1-2 equiv of a strong acid (e.g., camphorsulfonic acid, TMSOTf) is often required.⁵

An alternative protocol, developed by Hart and Rychnovsky,⁶ involves the formation of oxocarbenium ions, generated by reaction of an enol ether with an acid, that is then intercepted by an unfunctionalized alkene (i.e., not activated by an α -silyl group); such a strategy is attractive since it does not require silyl group activation. To the best of our knowledge, an example of an efficient *catalytic* variant of the latter approach has not yet been reported.

Research in these laboratories, during the past several years, has focused on the design and development of a range of new metal-based chiral catalysts and methods for diastereo- and enantioselective synthesis of chiral pyrans.⁷ In this communication, we report an efficient, practical, and highly stereoselective protocol that involves the use of a simple and inexpensive Brønsted superacid catalyst for conversion of unsaturated enol ethers to cis-2,6-disubstituted-4-methylene tetrahydropyrans: six-membered heterocyclic units found in a variety of biologically active natural products, such as dactylolide and zampanolide (shown below).⁸ Thus, low catalyst loadings ($\leq 0.01 \text{ mol } \%$; turnover number = $10\,000$) of commercially available triflic acid (TfOH, $pK_a = -13$ to -14) initiate stereoselective formation of the desired pyrans. Catalytic reactions are typically carried out at room temperature (22 °C) and proceed to >98% conversion in only a few minutes.

The present protocol was discovered inadvertently during investigations concerning the development of Mo-catalyzed asymmetric ring-closing metathesis (ARCM) of enol ethers.⁹

7155. (e) Bolla, M. L.; Patterson, B.; Rychnovsky, S. D. J. Am. Chem. Soc. 2005, 127, 16044–16045. (f) Shin, C.; Chavre, S. N.; Pae, A. N.; Cha, J. H.; Koh, H. Y.; Chang, M. H.; Choi, J. H.; Cho, Y. S. Org. Lett. 2005, 7, 3283–3285.

(5) For catalytic Prins reactions that involve acetals as oxocarbenium ion precursors, see: Aubele, D. L.; Lee, C. A.; Floreancig, P. E. *Org. Lett.* **2003**, *5*, 4521–4523 and references therein.

(6) (a) Hart, D. J.; Bennett, C. E. *Org. Lett.* **2003**, *5*, 1499–1502. (b) Patterson, B.; Marumoto, S.; Rychnovsky, S. D. *Org. Lett.* **2003**, *5*, 3163–3166. (c) Bolla, M. L.; Patterson, B.; Rychnovsky, S. D. J. Am. Chem. Soc. **2005**, *127*, 16044–16045.

(7) For representative examples, see: (a) Morken, J. P.; Didiuk, M. T.; Visser, M. S.; Hoveyda, A. H. J. Am. Chem. Soc. 1994, 116, 3123-3124.
(b) Johannes, C. W.; Visser, M. S.; Weatherhead, G. S.; Hoveyda, A. H. J. Am. Chem. Soc. 1998, 120, 8340-8347. (c) Zhu, S. S.; Cefalo, D. R.; La, D. S.; Jamieson, J. Y.; Davis, W. M.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1999, 121, 8251-8259. (d) Weatherhead, G. S.; Ford, J. G.; Alexanian, E. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 1828-1829. (e) Cefalo, D. R.; Kiely, A. F.; Wuchrer, M.; Jamieson, J. Y.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2001, 123, 3139-3140. (f) Gillingham, D. G.; Kataoka, O.; Garber, S. B.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 12288-12290. (g) Brown, M. K.; Degrado, S. J.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2005, 44, 5306-5310.

1872

In the course of these studies, we noted that, when **1** is subjected to a particular batch of Mo-based alkylidene **3**,¹⁰ unsaturated pyrans **2a**, **2b**, and **2c** are formed efficiently and diastereoselectively (>98% de, as judged by analysis of 400 MHz ¹H NMR spectra) instead of the expected ring-closing metathesis (RCM) product (Scheme 1).

Despite the appreciable Lewis acidity of Mo-based alkylidenes, particularly those bearing electron-deficient ligands, such as dichloroaryl imidate **3**,¹¹ we suspected that this and related olefin metathesis precatalysts may not be responsible for promoting cyclizations. Accordingly, we systematically investigated the reaction of **1** in the presence of a range of Mo-based alkylidenes (5 mol % loading in all cases), including freshly prepared chiral complexes **3**, which only promote RCM. In contrast, their Mo triflate precursors (e.g., **4**, Scheme 1) proved to be effective cyclization catalysts.

Next, we established that other metal triflates, such as Ag(OTf), Hg(OTf)₂, Zn(OTf)₂, Mg(OTf)₂, Sn(OTf)₂, and Al(OTf)₃, can be used as catalysts, whereas Yb(OTf)₃, which is relatively stable to hydrolytic decomposition¹² (does not readily generate TfOH through exposure with moisture), fails to promote conversion of **1** to **2a**–**c** (<2% conv). Finally, we determined that, in the above studies, cyclization efficiency (% conv) and reaction times are dependent on the age and quality of the metal triflate used. Collectively, the

⁽⁸⁾ For recent stereoselective total syntheses of zampanolide and dactylolide, see: (a) Smith, A. B., III; Safonov, I. G.; Corbett, R. M. J. Am. Chem. Soc. 2002, 124, 11102–11113. (b) Hoye, T. R.; Hu, M. J. Am. Chem. Soc. 2003, 125, 9576–9577. (c) Aubele, D. L.; Wan, S.; Floreancig, P. E. Angew. Chem., Int. Ed. 2005, 44, 3485–3488. (d) Jennings, M. P.; Ding, F. Org. Lett. 2005, 7, 2321–2324. (d) Sanchez, C. C.; Keck, G. E. Org. Lett. 2005, 7, 3053–3056.

⁽⁹⁾ Lee, A.-L.; Malcolmson, S. J.; Puglisi, A.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. **2006**, 128, 5153–5157.

⁽¹⁰⁾ Weatherhead, G. S.; Houser, J. H.; Ford, J. G.; Jamieson, J. Y.; Schrock, R. R.; Hoveyda, A. H. *Tetrahedron Lett.* **2000**, *41*, 9553–9559.

⁽¹¹⁾ For a comprehensive review of chemistry of early transition metal alkylidenes, see: Schrock, R. R.; Hoveyda, A. H. *Angew. Chem., Int. Ed.* **2003**, *42*, 4592–4633.

^{(12) (}a) Kobayashi, S.; Hachiya, I. J. Org. Chem. 1994, 59, 3590–3596.
(b) Kobayashi, S.; Nagayama, S.; Busujima, T. J. Am. Chem. Soc. 1998, 120, 8287–8288.

above findings suggested that small amounts of TfOH are likely responsible for the observed catalytic activity.

On the basis of the above findings, we examined the effect of pure TfOH on promoting the conversion of enol ether **1** to pyrans **2**. As the data in entries 1 and 2 of Table 1 indicate,

Table 1. Effect of Catalyst Loading on Product Distribution ^a						
Cy 0.01	TfOH					
1 Me <	₆ , 22 °C, ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Me 2c Me				
entry	mol % TfOH	$2a:2b:2c^b$				
1	10	(polymer)				
2	5	(polymer)				
3	1	1:3:3				
4	0.1	1.5:1:1				
5	0.01	4:1:1				

 a All conversions and de >98%, determined by 400 MHz $^1\rm H$ NMR analysis of the unpurified product. b Determined by 400 MHz $^1\rm H$ NMR analysis of the unpurified product.

treatment of **1** with 5 or 10 mol % of TfOH gives rise to rapid polymerization (<2% **2**). However, upon decreasing the catalyst loading considerably (≤ 1 mol %), the desired tetrahydropyrans **2** can be isolated (entries 3–5, Table 1). The ratio of the olefin isomers is affected by catalyst loading, with 0.01 mol % of TfOH providing a 4:1:1 ratio of **2a:2b**: **2c**. Attempts at improving the above product distribution by further lowering the catalyst loading resulted in >98% recovery of the starting material.

Next, we examined the scope of the cyclization process. The results of these studies are summarized in Table 2. As shown in entry 1, we established that pyran 2a, from the reaction of enol ether 1, can be obtained in the pure form in 55% isolated yield. Similar levels of reactivity and diastereoselectivity are observed with diene 5 (entry 2); dihydropyran 6a is obtained in 64% isolated yield. The acid-catalyzed cyclization of enol ethers 7 and 9, where the 1,1-disubstituted olefins bear a longer alkyl chain (vs Me in 1), leads to the formation of 8a and 10a as 1.6-1:1 mixtures of olefin stereoisomers in 53 and 75% isolated yields. The transformations depicted in entries 3 and 4 proceed with improved levels of product selectivity (a:b:c = 10-11:1:1), presumably because isomerization of the trisubstituted exocyclic alkene is now thermodynamically less favored (vs with disubstituted exocyclic olefins in 2a and 6a). Desymmetrization of triene 11 proceeds smoothly to afford dihydropyran 12a in 60% isolated yield and >98% de. Catalytic cyclization of 1,1disubstituted enol ether 13 (entry 6, Table 2) is noteworthy as it affords 14a, bearing a tertiary ether site, in 90% de and 46% isolated yield. The acid-catalyzed transformation of 15, which carries a sterically more hindered and electrondeficient enol ether, requires 18 h to proceed to completion, delivering 16a-c in reduced selectivity (2:2:1); diastereomerically pure 16a was isolated in 27% yield.

Several other noteworthy points regarding the acidcatalyzed cyclization merit mention. (1) Catalytic cyclizations

Table 2.	Diastereoselective TfOH-Catalyzed Synthesis of
cis-2,6-Di	substituted-4-Methylene Tetrahydropyrans ^a

entry	substrate	major product	a:b:c ^b	yield o a (%) ^o
1	CX_O_	Cy H O Me	4:1:1	55
2	Me 1 Ph Me 5	Ph 6a	3.5:1:1	64
3	Ph Et 7	Ph Ba	11:1:1	53
4	Ph 9		10:1:1	75
Ме 5	Me 11		4:1:1	60
6	Ph Me 13	Ph H 0 H Bn	4:3:1	46 ^d
7	Ph Me 15		e 2:2:1	27 ^e

^{*a*} Conditions: 0.01 mol % of TfOH for entry 1 and 0.1 mol % of TfOH for entries 2–7, C₆H₆, 22 °C, 10 min, N₂ atm. All conversions and de >98%, determined by 400 MHz ¹H NMR analysis of the unpurified product. ^{*b*} Determined by 400 MHz ¹H NMR analysis of the unpurified product. ^{*c*} Isolated yields after chromatography on silica gel impregnated with AgNO₃ (5% w/w). ^{*d*} Diastereometric excess = 90%. ^{*e*} Reaction time = 18 h.

can be carried out efficiently in various other common solvents, such as pentane, toluene, Et₂O, THF, dichloromethane, and dimethoxyethane with similar levels of efficiency as that observed in benzene; however, product selectivity (a:b:c) is consistently higher in benzene. For example, with 0.1 mol % of TfOH at 22 °C, a 1:1:1 mixture of 2a:2b:2c is formed when catalytic cyclization of 1 is carried out in THF; a 3:1:1 selectivity is observed with Et₂O as solvent. (2) Catalytic cyclizations can be carried out at -78 °C (toluene). Under these conditions, reactions proceed to completion (0.01 mol % of TfOH) but without any improvement in product selectivity (a:b:c). (3) Longer reaction times lead to an increase in the amount of endocyclic products; for example, after 5 days, 1 is converted to 2b and 2c with <2% 2a remaining (established by analysis of 400 MHz ¹H NMR). Moreover, when pure 2a is re-subjected to the reaction conditions, it is converted to 2b and 2c in the presence of 0.01 mol % of TfOH after 1 h at 22 °C. The above observations indicate that products **a** are likely the exclusive kinetic products which then isomerize to **b** and **c** olefin isomers. (4) One limitation of the present catalytic protocol is that there is <2% conv with substrates bearing a terminal alkene.

Examination of other Brønsted and Lewis acids as catalysts for this class of cyclization reactions clearly indicates that TfOH is unique in its ability to promote efficient and selective C-C bond formations. Thus, when enol ether 1 is subjected to camphorsulfonic acid or trifluoroacetic acid (5 mol %), <2% of the desired product is obtained (>98%) recovered starting material). In contrast, Amberlyst 15E (0.5 g resin/mmol substrate) gives rise to >98% conversion after 1 h (22 °C) to afford 2a:2b:2c, albeit with diminished product selectivity (1:1:1) and diastereoselectivity (33 vs >98% de with TfOH in favor of the cis diastereomer). Lewis acids BF₃•Et₂O and TiBr₄ induce cyclization, but significantly less efficiently: with 5 mol % of BF₃·Et₂O, >98% conv to an equimolar mixture of 2a, 2b, and 2c is observed (18 h), whereas TiBr₄ (\sim 90% conv after 18 h) provides a complex mixture of products, including 2a, 2b, and 2c and $\sim 10\%$ unreacted starting material.

The starting vinyl ethers required for TfOH-catalyzed cyclizations can be accessed from the corresponding homoallylic alcohols in one Pd-catalyzed step; the procedure shown in eq 1 is representative.¹³ Subjection of homoallylic alcohol **17** to 0.5 mol % of commercially available Pd(OCOCF₃)₂ and 4,7-diphenyl-1,10-phenanthroline in the presence of 0.75 equiv of Et₃N and 20 equiv of *n*-butyl vinyl ether (75 °C, 24 h) gives rise to the formation of **5** in 71% yield after silica gel chromatography (eluted with 1% Et₃N). Because a variety of homoallylic alcohols are available in highly optically enriched form,¹⁴ the present protocol can be easily applied to the enantioselective synthesis of *cis*-2,6-disubstituted-4-methylene tetrahydropyrans.

1,1-Disubstituted vinyl ether **13** (entry 6, Table 2) was prepared through Tebbe olefination¹⁵ of the corresponding

(13) Bosch, M.; Schlaf, M. J. Org. Chem. 2003, 68, 5225-5227.

phenyl acetate; **15** (entry 7, Table 2) was accessed through a conjugate addition^{6a} method. It is important to note that the more substituted and functionalized oxocarbenium ions generated from enol ether precursors, such as **13** and **15** (entries 6 and 7, Table 2), cannot be readily prepared in situ through Prins-type protocols.^{2–4}

In summary, we present a method for catalytic and diastereoselective cyclizations of unsaturated enol ethers that afford *cis*-2,6-disubstituted-4-methylene tetrahydropyrans. The overall process is direct and operationally simple: vinyl ether substrates can be accessed from easily available homoallylic alcohols, and cyclizations are readily promoted, typically in less than 10 min, in the presence of 0.01-0.1mol % of commercially available TfOH (~\$6/gram) at room temperature. The effectiveness of the present protocol and the significance of 2,6-disubstituted pyrans in chemical synthesis should render the present method of synthetic utility. Moreover, the recent emergence of chiral Brønsted acid catalysts¹⁶ suggests that a highly efficient approach for an enantioselective variant of the present process may be achievable. Studies along these lines are in progress and will be disclosed in due course.

Acknowledgment. Financial support was provided by the NIH (GM-59426 to R.R.S. and A.H.H.). In addition, post-doctoral fellowships to A.P. (Universita' degli Studi di Milano) and A.-L.L. (Lindemann Trust) are acknowledged. We are grateful to Steven J. Malcolmson for experimental assistance, and to Drs. Constantin Czekelius and Monica Duval for helpful discussions.

Supporting Information Available: Experimental procedures and spectral data for products (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

OL060430F

⁽¹⁴⁾ For representative procedures for enantioselective synthesis of homoallylic alcohols, see: (a) Keck, G. E.; Krishnamurthy, D.; Grier, M. C. J. Org. Chem. 1993, 58, 6543-6544. (b) Yanagisawa, A.; Nakashima, H.; Ishiba, A.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 4723-4724.
(c) Bode, J. W.; Gauthier, D. R.; Carreira, E. M. Chem. Commun. 2001, 2560-2561. (d) Denmark, S. E.; Wynn, T. J. Am. Chem. Soc. 2001, 123, 6199-6200. (e) Kinnard, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920-7921. (f) Gung, B. W.; Xue, X.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 10692-10697.
(g) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763-2794. (h) Lachance, H.; Lu, X.; Gravel, M.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 10160-10161. (i) Hanawa, H.; Uraguchi, D.; Konishi, S.; Hashimoto, T.; Maruoka, K. Chem.-Eur. J. 2003, 9, 4405-4413. (j) Gravel, M.; Lachance, H.; Lu, X.; Hall, D. G. Synthesis 2004, 1290-1302. (k) Traverse, J. F.; Zhao, Y.; Hoveyda, A. H.; Snapper, M. L. Org. Lett. 2005, 7, 3151-3154. (15) (a) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc.

^{(15) (}a) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc.
1978, 100, 3611–3613. (b) Pine, S. H.; Zahler, R.; Evans, D. A.; Grubbs, R. S. J. Am. Chem. Soc. 1980, 102, 3270–3272.

⁽¹⁶⁾ For example, see: (a) Uraguchi, D.; Terada, M. J. Am. Chem. Soc.
2004, 126, 5356-5357. (b) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004, 126, 11804-11805. (c) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566-1568. (d) Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418-3419. (e) Sohtome, Y.; Takemura, N.; Iguschi, T.; Hashimoto, Y.; Nagasawa, K. Synlett 2006, 144-146. (f) Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 48-49. (g) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84-86.